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ABSTRACT

Starting data are provided for internal characteristic programs
pertaining to axially symmetric rocket nozzles. Several approximate
methods are examined before a complete analysis is attempted.

Using perfect frozen gas considerations, the potential function in
the region of interest is approximated by a double power series in the
space variables. The potential equation of motion, with the inviscid
boundary condition, produces non-linear simultaneous equations.

The non-linear equations are handled uniquely, and the results
are utilized to describe the flow field. Different methods of checking
the validity of the results are applied, and comparisons are made
with other analyses.

The remaining difficulties in the development of a production
program that can handle arbitrary minimum section geometry and
slightly varying mass flows are discussed.
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i, j

G(m, p)

G(i, p)

DEFINITION OF SYMBOLS

DEFINITION
local speed of sound
local speed of sound where the velocity is sonic

coefficients in a series expansion of g(y), or
constant in Method I approximate analysis

coefficients in the polynomial representation of
G, P

coefficients of the double power series expansion of
the potential function,

same as Aj 2j

coefficient used in approximate analysis II
coefficients of the series expression for the bound-
ary curve, or coefficient used in approximate

analysis - Method II

coefficient used in approximate analyses in Method I
for f2; while in method II for aj

the "unknown" of the itP boundary condition
equation, i.e., Aj+1,0

coefficients of the ® series in the approximate analyses
x = g(y) defines the surface of the sonic line inMethod II
indices

denotes any of the boundary condition equations (for
m <M) containing pt+1 columns

denotes the ith boundary equation, and contains
pt1l columns
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SYMBOL

G(ivw)

DEFINITION OF SYMBOLS (CONTINUED)

DEFINITION

a function equal to zero, denotes the ith boundary
equation and contains all of the columns

mass flow (dimensional)

mass flow (non-dimensionalized)

denotes the number of Di unknowns considered;
it is one less than the number of rows considered

Mach number referred to the speed of sound a¥*

index of the boundary condition equations
index

integer, one less than the total number of columns
considered

subscript denoting boundary

perturbation velocities in the x and y directions
respectively, non-dimensionalized on a%*

total velocities in x and y directions respectively,
dimensional

minimum throat radius

axial and radial directions in circular cylindrical
coordinates

constant, equal to axial velocity gradient

distance from minimum section to the sonic line
along the x axis

throat radius of curvature at the minimum section
longitudinal coordinate, £ = x-g(y)

ratio of specific heats
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&x, ¢y

ogi, j

DEFINITION OF SYMBOLS (Concluded)

equal to ?y/—;_

perturbation velocity potential
partial derivatives of &, equal to u and v, respectively
flow angle

zero or one function 0 .
1-)

isentropic stagnation density
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INTERIM REPORT ON METHODS OF DETERMINING
THE TRANSONIC FLOW FIELD IN AN
AXIALLY SYMMETRIC ROCKET NOZZLE

SUMMARY g'j/
|12

This study will ultimately produce a working computer program
to provide the initial data for the method of characteristics. The
program must be more exact than those analytical methods now
available.

Since the flow becomes supersonic in the vicinity of the throat of
the nozzle, analysis of the transonic flow in the throat region is of
interest. The physical problem was approximated by a steady-state
axisymmetric system (co-ordinates x and y) with zero radial velocity
along the axis. In this region, the fluid is considered to be a homogen-
eous, perfect gas in frozen equilibrium with no viscous forces. The
system is also considered irrotational and isentropic with negligible
energy losses through the nozzle surface. In the region of the throat,
the nozzle surface is expressed as a power series in terms of the
axial coordinate and is not limited to boundary surfaces of constant
radius of curvature for the minimum section.

This method attempts to solve the full, non-linear potential
equation of motion. A double power series in both x and y is assumed
for the potential function. The original equation is satisfied by re-
currence relationships for the general coefficients that are evaluated

in terms of the coefficients of the velocity distribution along the axis. .-

The remaining coefficients are determined by satisfying the inviscid
boundary condition along the nozzle contour, where the contour i
described by a power series in x.




The problem is that the analysis produces an infinite set of highly
non-linear simultaneous boundary condition equations. The number of
equations used was determined by the size of the region of convergence
of the flow field. The minimum number was solved by subsequent
iteration. The iterative method deliberately does not satisfy each
equation. The error of the equation is used as a bias so that the effect
of the iteration of the rest of the system will channel the forced error
toward a correct solution. This method should be usable in other
areas where non-linear simultaneous equations occur.

A library of solutions is needed to pick initial input values close
to the actual solutions. The results are presented for constant radius
of curvatures of 5 to 1,25 times the minimum section radius.

This analysis may be the first to allow small variation in mass
flow in a given nozzle. The variation appears as a shift in the loca-
tion of the point where the Mach one lineintersects the axis.

The solution is used to compute input data for characteristics
and to check the accuracy of the program. Although this method is
a frozen flow analysis, it is used in conjunction with equilibrium
programs by stipulating the value of the ratio of the specific heat from
an equilibrium combustion and expansion program. The method of
characteristics was used to confirm the validity of this method.

The obstacle to general use of this method is the amount of com-
puter running time, but the program should prove to be valuable in
nozzle design.




INTRODUCTION

The method of characteristics, as applied to gas dynamic problems,
is restricted to certain regions in the flow field. These regions are
those in which the flow is not only supersonic but also purely hyper-
bolic in the mathematical sense. Practically, it is restricted to
those regions in which the local Mach angle is not large enough that
the resulting characteristic mesh calls for excessive computer time.
Therefore, it is necessary to generate, by some other analysis,
certain calculated flow properties over a suitable surface from which
the method of characteristics can be started.

Ultimately this study will produce a working computer program
that will provide the starting data for the method of characteristics as
applied to the flow field internal to a rocket exhaust nozzle. Since the
flow becomes supersonic in the vicinity of the throat, the analysis of
the transonic flow in the throat region is of interest. There are
several approximate methods for treating this particular flow; however,
none of these have an accuracy obtainable by characteristics (1),

Some of these methods are discussed to show their salient features,
regions of applicability, and limitations,.

Also discussed in this report are the method developed to calcu-
late the flow field to within an arbitrary degree of accuracy, the
computer program utilizing that method, and a comparison of various
methods.

This study was performed by R. S. Mendelson of the Structures
and Mechanics Department of Chrysler Corporation Space Division,
Huntsville, Alabama Operations under contract NAS 8-4016, Task
Order M-P&VE-PA-M-6, Task Assignment M-P&VE-PA-6-63.

*Bracketed numbers that appear as supperscripts refer to the
Bibliography.



ANALYSIS
1. GENERAL

There are several methods, other than the two presented in this
paper, which give approximate solutions for an internal transonic
flow. Before discussing the new method, which is arbitrarily exact,
some of these methods should be studied because they serve to check
the exact method.

In these analyses, the physical problem has been approximated by
a steady state axisymmetric system. The fluid in the region investi-
gated is assumed to be a homogeneous, inviscid, perfect gas of con-
stant composition. Although there is energy lost to the nozzle wall,
these losses are neglected, and the system is considered an irrota-
tional, isentropic one. The boundary is required to be continuous
and to have a continuous slope. The exact analysis also requires that
the nozzle radius in the region of the throat be expressible as a power
series in terms of the station variable x.

Combining the equations of continuity and momentum, and impos-
ing the irrotationality condition results in the general equation of
motion

2 2 aU aUu 2 2,9V 2 V. __(2)
-U _— - 2UV — - -+ —=0 1.1
(a®-U%) == Vigs t@-VheT +at o (L1)
where: a is the local speed of sound,.

U and V are the total velocity components in the x and y
directions, respectively.

x and y are the axial and radial directions in circular,
cylindrical coordinates.

The speed of sound, where the Mach number is unity, is defined
as a* and is only a function of stagnation conditions. The velocities
U and V are nondimensionalized with respect to a* and written in the
form of perturbation velocities, u and v, so

g

[ -1+u (1.2)
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and

u|<
<

=v ' (1. 3)

w
3%

System dimensions, x and y, are nondimensionalized by the
minimum nozzle radius Yo (FIG 1).

- The equation of state and the isentropic relationship and equations
1.2 and 1. 3 are used to reduce equation 1.1 to the form

ou 2 ov
e m ] 32 [y r e v -] 82
[u( +u) + T' V4 5=t D) I ul2+u)-v 3y
(l+u) 8u 2 [ z] v
4 - T 2 — =0 1.4
v i+ oy + v 11 u(Z2 +u)+v v \ (1. 4)
where: Y is the ratio of specific heats, and
vy -1

= . 1.5
r=1 5 (L. 5)

The condition of irrotationality assures the existence of a velocity
potential & , so

P, =u
and (1. 6)

d =v
y

where the subscript notation indicates partial differentiation with
respect to x or y.

By virtue of equation 1. 6, equation 1.4 is reduced to the form

l'(2+<I>x)'I>x- P@zy] Py +[GTZI_)_p<px (2 +¢,x)_¢,yz] @YY'
-4 2 e

Equation 1. 7 is the basic equation from which all succeeding analyses
originate,.

2. APPROXIMATE ANALYSES

Deleting terms of the order <I='X2 and @Yz as small compared to
unity, equation 1. 7 can be simplified to

)
(vy+1) QX QXX + 2@}, @xy - 5—}7— (y@y) =0 (2. 1)

v



NOZZLE SURFACE

M* = 1 LINE
I X =g (y)
YO
NOZZLE ¢. +
T X

4——6—6»

FIGURE 1 LOCATION OF COORDINATE SYSTEMS




a. Sauer's Method (3)

In Sauer's analysis, the origin of the coordinate system
(FIG 1) is placed on the axis at a distance ¢ (to be calculated later)
downstream of the minimum section so that it coincides with the
intersection of the axis and the critical (sonic) line. Hence, from
equations 1.2 and 1. 3 and the definition of equation 1. 6, it follows that
@ (0, 0)’-@}’ (0,0) = 0. Furthermore, it is argued that both <I>y and
® xy are small in the vicinity of the axis, y=0, and accordingly, the
term Zd?y Pxy is deleted from equation 2.1, resulting in

1

(v#) e, @ -, - —&

yy - 5 By =0 (2.2)

Sauer assumes the existence of a solution to equation 2.2 in
the form:

o = f £, (x) y*! (2. 3)
L& 1
i=0
where the coefficients f 7;(x) are functions of x only.
The derivatives of ¢ from equation 2.3 are substituted into
equation 2.2. The resulting recurrence relationship and the

approximation
fo({x) =ax
(2.4)
where: a =constant, results in
x? ] ,
fo (x)= a 5= (2.5)
2 (x)= -(7—-;1—)- a* x
_ (y+1)? a?
fq (x)= 64 ]
with fg (x)=fg (x) = ------ fo(x) =0, n> 6

The constant a is a first approximation to the longitudinal velocity
gradient on the axis of symmetry.

Substituting equation 2.5 into equation 2. 3 and differentiating gives

(vy+l) 2 2
P _=u=a x + — o
x 4 4 (2. 6)

2 3 _3
oo y+1) 2 (y +1)" a’y
Qy_v___z__a xy+—-—-—16

and



The two following boundary conditions are required to evaluate a
and ¢:

-

atx = -e andy=1
v=20
and
1 1 oV

(2.7)

) = (l+u) o9x
where p is the radius of curvature at the minimum section.

Equation 2.7 insures that the streamline at the wall has the slope and
curvature of the wall at the minimum section. Solution of equation
2.7 gives

¢ = ;’ LI (2. 8)
and
1 _ 1 (y+1) 2
P —[1. +('Y +___1) az] 2 * (2.9)
8

Sauer assumes that in equation 2.9

(1_;_1)02 << 1

and drops that term to get

. s Y
Y&y +1) p (2.10)

But closer examination shows that terms of the order of @2 have not
been dropped any place else in the method. If the term is not dropped
from equation 2,9 then equation 2. 10 becomes

@ =\/(‘Y*2l-1)[4p4-1] | e

v+ 1 o
Obviously, unless 4p>>1, the g a? term cannot be legitimately

dropped in equation 2.9.




The relationship

1+u) + vi=1 (2.12)

defines the critical curve M#* =1, where M*:\Fl‘!-u)z + v,

Sauer used for a first approximation of the curve the condition
u = 0. (2.13)

Sauer's method was never intended to be an exact procedure for
obtaining the solution of the transonic flow field. Consequently,
Sauer's method should not be expected to produce results having
accuracycomparable to the method of characteristics. In the dis-
cussion of the other simplified analyses, various approximations that
Sauer used are eliminated,.

b. Other Methods

In addition to Sauer's approximation, there are other approximate
analyses which give useful comparisons. One of the more notable
analyses is that of Oswatitsch and Rothstein (2), It, along with that of
Sauer, is discussed briefly by Shapiro (4). The former method, while
it uses the full equation of motion (Equation 1, 7),nevertheless, requires
some apriori knowledge of the velocity distribution on the axis. In
addition, the resulting flow field does not necessarily satisfy the
initial equation in the middle regions.

Shapiro also discusses a relaxation of finite-difference technique.
Since this is a purely numerical method that does not lend itself to
generalized parameter studies, it is not discussed in this document.

c. Other Methods Developed in Conjunction with the Present Method

Two 'approximate methods that originated in the present study are

of interest because they can be used to check the arbitrarily exact
solution.

An investigation of Sauer's method, including the linear coefficient
Sauer dropped, was undertaken, It was concluded that for a large '
nondimensional radius of curvature (p), Sauer's method would be
quite close to an exact solution, However, as p approaches one or
less than one, Sauer's method does not produce a good approximation,



In the vicinity of the nozzle wall,the term 2<I>Y ®xy, which Sauer
drops, is not of negligible magnitude. By writing

3 (@y)?

2Dy Byy = % (2.14)
and noting that near the wall
dys 2,15
@Y ~ (1 + @x) _d-;{—_— ( . )

it becomes apparent that in the proximity of the boundary
2
~ 9 2 (dYS ) 2.16
2<I>yq>xy o [ (1 + @) T (2.16)

where yg = yg (x) denotes the expression for the boundary.

Thus, by observation of equation 2, 16 it is seen that the condition
Zéyéxy <<1 is met only for small nozzle slopes (large radius of curva=-
tures), particularly on the supersonic side of the throat where (1t o) > 1,
Accordingly, it should be expected that Sauer's method is invalid for highly
curved walls, though it should give excellent results for a slowly varying
nozzle cross-section area. An analogy between the present case and
external, axisymmetric flow indicates that this is precisely what should be
expected. In external flow problems, linearized theory is valid only for

small longitudinal area gradients of the body; therefore, it gives good results
only when such is the case,

Method 1

In this method, the procedure used by Sauer is followed with the
2<I’Y<I>XY term retained (equation 2.1). This results in a non-terminating

series of terms f2n (x) y 2N whereas, in Sauer'!s case all terms are zero
beyond n = 2,

The coefficients, assuming fol = ax, are of the form -

n
f - (Y +1) 2n-1

2n ~ > @ (an T by ox) (2.17)
2n'

n¥ 0

where ap and by, are evaluated from the recursion formulae.

These formulae can be simplified to a recursion involving ap and by
rather than fzn’ i.e.,

10




a; =0andbj = 1
while
_ bp.1 + i=n-2 aj +1 bn-i-1
n ® Z(m-1)2 i;l (itD) (n-i-1)
and . (2.18)
" =2 by 41 bnoga
n = 126 G+)  (n-i-])

n> 2

Evaluation of equation 2. 3,using the first five terms of the above

equations, produces, after differentiation, the following perturbation
velocity components?

2 2 2 27°%
a=ax + (7+11)*a v, lxy+1l)a® y%]

3
4 lyHe’y
32 144

, Ller+l) o? y’]‘

6144
and (2.19)
(v H)a? (y +1%a° s
ve =L 0 oy + L (142ax)y
_ 2 16
(v +1)%* (3 s, 1 T :
+—--—24 (8 +avx)y +768»(7+1) a(3 +ax)y

11



The parameter ¢ can be evaluated by applying the boundary equation
that the velocity component in the y direction (v) equals zero at y=1.0

and x= ~¢, i.e:

)
v=2,= ) (2) fp; (-¢) (1.00)% 1=
i= 1
Consequently,
8
(v +1) N ey 3
¥ , (vt 2j-3
Wl o4 p At 1) . .
_ 8 i j;3 j %1 2
L A =0 20yt -l 2(5-1)
1 + b a.z + ‘Y. a; 'Y
4 1 Z J 1 J
| j=3

(2.20)

(2.21)

At any point along the nozzle surface, defined by Y=Yg (x), the

following should be true:

or

Vv - (1+u) Ysl =

(2.22)

where u is the non-dimensional perturbation velocity in the x direc-

tion, and yg' is the slope of the nozzle contour.

Using

@y = vand ®x = u and substituting equations 2.3, 2.17, 2.18,

and 2.21 in equation 2,22

results in

2
-B; .+ \/Bi - 4A;Cji

o: =

1 2A.

12

1

(2.23)




where a; is the a value of the ith

Aj, Bij, and Cj are:

iteration attempt, and the functions

2 r < N
(y+1) (v+1)
A= =33 2 Yi-1 - Bi—lly4i-1
[ ;
(r+1) (v+1)
B; yy 7 -1t Biaviia
a -
j=n-1

_ ) i 2 [(+))
C;= B+ .23 (v+1) a;, [—(j+l) aj+1 Yi-1 -
J=

f

bi R b 2n
2 2j Y aj-1
iz Bi'l] yiJ-l B T 4 Bi-1 vi-1 (2. 24)

where: B; = a_ll_(%_)/‘fl- (HZ

yi = 1+p[1- 1_(51-)‘7‘]
. -\ P
These are solved by starting with an @ value from Sauer's analysis

and then cycling between the equations until a satisfactory solution is
achieved. '

J

In attempting to construct a constant M* line, it should be noted
from an examination of u and v, as given by equation 2. 19, that

Sauer's approximation, equation 2.13, is only good when three terms
are used to describe the potential function.

13



A better approximation for an M*= 1 curve is

But, in this analysis (and all further analyses) a curve of an
arbitrary constant Mach number will be given by

20y + B2 + B2 = d(2%4d) (2.25)
where d (a constant ) is defined by M* =1 + d
The curve is defined as x = x(y),where
_ L1+ ~(L1)* -4(L2) (LO) (2. 26
2(L2) -26)
\
with
i=2n-1 j=n-1
i=n ji=i=-1 i+l (it1) .
L2=a?+ ) t (rt1) at bj+) bj-j 21
i=1 j=0 (G+1) (i-3)
i=nt1 j=i-n
i=2n-1 j=n-1 (2. 27a)
izn 5i-1 i+1  2i+1 ? o
L1= 22+ ) (rt1) " o7 (biy i a: « +
i=1 j=o0 (j+1) (i-3) j*t1%i-j
i=n+1 j=i-1
i=n i 2itl
2i (y+1) « 2i
i=1

14




and

~
LO = -d(2+d) +

i=2n-1 j=n-1

i*n j=i-1 +1 21

3y (vt))'" " 2 .
+ Z ZI ——— a4 a5_; yoi+
S - jt1 %i-j :
=1 =0 G+1)  (i-j)
i=nt+1l j=i-n
\ (2.27b)

i=2n j=n

i=n j=i-1 i 2i 2i

+y! (1) a” by bi.j yo o+

2, =1 4j2 (i-j)2

i=nt+1 j=i-n

n P 2i 2i

1 1 1

+Z (y+t1) o b vy

el i¢

i=1 J

(NOTE: In using equation 2.27 when the summation has two sets of
values, use all the values closest to the summation sign at the same
time and then use the set of values furthest away.)

Method 1I

Since the interest is in the flow about Mach one, it was theorized
that a quicker converging series might be obtained if the coordinate
system was changed so that the axes were the nozzle centerline and the
Mach one surface. Consequently, this method involves a transformation

of the coordinate x,.

Let the variable x be replaced by the variable £ , defined so
that ¢ = x-g(y), where g(y) denotes the curve representing the critical
(sonic) line (FIG. 1). The differential equation (including the 2&y éxy
term) is transformed from x, y coordinates to the ¢, Y frame of
reference,

15



The g(y) curve is unknown; however, the assumption is made
that it can be represented as an even polynomial iny, i.e.:

j=oo y
gly) = ), aj vy ! (2.28)
j=0

where the aj's are, at this point, yet to be resolved,

Let the x-y origin of the coordinates be located on the axis at the Mach one
peoint, in which case a = 0. Due to the location of the x-y axis, epsilon is

still defined as in Sauer's analysis (FIG. 1). The potential function is
assumed to exist in the form

iTew

& = ) £ (&) YO (2.29)
i=0

The change of coordinate system produces

f"fl‘f‘ )
xY_E-‘Y_

and L (2. 30)

= _g|f|

-

As in prior analyses, recurrence formulae can be calculated
by substituting ® and the polynomial form of g(y) into the transformed
differential equation. This gives fp; (£) in terms of fo (£) and the

aj coefficients, The assumption is made, similar to Sauer's analysis,
that

f()I ()= a €

In addition,it is assumed that the coefficients of the Mach one
polynomial are in the form

ay= by (v+1)! o®! (2.31)

where b; is not a function of @, %, y, or §. It becomes convenient
to represent f, ~as

2n-1 + 3
(v+1) [4n * B @ ]nf o (2.32)

on - 22

16




where A , and B,, are not functions of x, £, or a but may be functions
of Y or any one of the set of by, 's.

With the proper manipulation of equation 2. 31 and 2. 32 in the
simplified equation of motion given by 2.1, the recurrence formulae
for A and B, are obtained as

B; = f *+ 2i® b;, wheni 2 1 (2. 33)
and”
- Bi.i
AT Taene t
ST 8 A (21-))
FL | Tew TR G et z‘bi'jl'
=1 .
k=i-j-2
Bj (k+1) bx+1 Bj-j ]
- 05, 5-1 2k i-j-k-1 (2. 34)
j 3s1 k-zo (i-j-k-1)2 |

when i 2 2

where
A= 0,8 =3 (2. 35)
where
j=i-1 8 3
B; = 2, T, when i 22 (2. 36)
j=1 3 G
and
= jEi-1
oji-1 = Uy jei1 )
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Before the usual boundary conditions can be applied, the values
of the bi's must be found. The restriction to find the necessary extra
boundary condition arises from the definition of x=g(y) as the curve of

M* equal one.
The M* = 1,0 curve is necessarily that along which

20+ &7+ 2 = 0

(equation 2, 25).
ship for the b; 's, i.e.:

b, = “%
1
b2 = -5
and
j=i=2
by = -1 -%1— + BiBig
i j= i (i-j)
At A k=i-j-2
+ +1 .i+1 . i.-1 + _Aj+1 Bj-j-k-1
(r+1) [(J+1) (i-3) kzo (et} Brep1 (- G+1) (L-k- 12
=i-j-k-2
b (£+1) bg41l Bj Bi-j-k-f -1 ]]
120 j2 (i-j-k-t -1)? ,
when
1_>_3
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The first five terms of the potential equation, when differen-
tiated, produce velocity perturbation components of

L2202 V- S R

u =aé 512 512
and
_{y+) o? ¢ (y+1)* @ 3
-T2 y - 16 Y- l; (2. 38)

) (14-81)301s [% --—;—aﬁly

(1+ 4o’ [ (y+1) 11 at 7
3 * 64 24 y N

while, the first four terms used to describe the Mach one surface are

g(y):-iﬁi—a_ yZ [1 +-(lt8];)— a2y2 +

4
2
+ (7;1) ot (z%_ + _;;1_) vt o+ (2.39)

(v+1)® a® 23
* 128 (1_2 * 7) Y"]

The boundary conditions that are applied are the same as used
in Sauer's analysis (equation 2.7). The noticeable difference, however,
is that while Sauer applies them at x=-¢ and y=1.0, in this analysis
‘the point is £ = -[e + g(1. 0)] andy = 1.0. The resulting equations are

© j=i-1
b- B.-.
Z 2(y+1)} aZJ- Z (j+ 1_. 12+l i-i
i=1 1+1) 3=0 (i-3)
€ + g(1.0) = — (2. 40)

> ]
2 Z [(‘Y‘l"l)i QZi Bi-l-l /(i+1)]
i=0
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and

} -Ly + yLy2 - 4Lkl
@, = +J 21, (2. 41)
where
. th , . .
a, is the k ~ iteration attempt to find a 3
1
L, = Q—;—L (p - 1/4)
12
i=n ( l)i+l 2(i+1)
- 1 T+ ak-1 Bitl
M ' i-ZZ (i+1) [2(i+1)z P Bi+1]+ > 2.42
+1
i=n j=i
i 21 A4l 2 (j+1) bj+l Bi-j+l
Z (v +1) "k-l[(m) - G+l ak'l,z (-5+1) :
i=1 j=0
+ :
o P 2i
2 [(1(+1)1 a ' Bitl /(i+1)]
i=0 -1 y

(2. 43)

2 ) 3 5
ao=J(‘y+1) (p-1/4) { (p-1/4) <l'-Jp‘z + S __T6_]

and n is the number of terms considered in the series.

Once the @ and ¢ values are known, it is relatively easy to establish
constant Mach lines. Along constant M*=1 + d lines the § value for any °

y value is given by:
g = ‘7‘1 ﬂ‘klz'}' lzz, (2.44)
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e

iz n (41 26 +1) 2(it1 k=i-1
Al =i{1 + izl (7+1)1+a i+ )y (i )[Zgﬁ;z + (v +l)z ———‘itﬂ)
Aj +1-k JLi-k-1 (j4+1)bj+l Bi-j-k
i+l-k ~ £ (i-j-k)2

i=n j=i . .
[1 L 5 (y + 1112420 4D

a ?

2(i+1)Bj+1 pBi+l-j
(G+1) (i+l-))

(2. 45)

_ d(24d) J +2 2( +1) 2(i +1) Bj +1 Gi-j+i}
v _—[ 8 e’ A T

i=0 ;=0

Methods I and II have a built-in error because they have not taken
into consideration the &2 and $.2 terms in ejuation 1.7, but they
have included similar order of magnitude terms in the series expansion

of @,

Neither methods I nor II have yet been programmed or substituted
to replace Sauer's analysis. But this will be done later, and further
comparison and analysis will be attempted.

3. PRESENT METHOD

In view of the requirements for an analysis giving exact results, it
was considered advantageous to proceed directly to a solution of the
exact equation of motion, For convenience, that equation is repeated

here,

2
{(-2+<1>x)¢1>x T @Yzl o +[m

4
-_-(‘Y‘l‘l) (1 +24) <I>Y<I>xy +(——(7+1)

The potential function is assumed.to exis

Z‘ z Afi, 2j)x! y2

., (240y) - ¢y2]¢

t in the form

(3.2)

-T [‘I’x (242 %) +d>yZ] P

yy~

=Y = 0(3.1)
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where the even exponent of the variable y is caused by the symmetry of
the flow field. The velocity distribution along the x axis would be

i i AQ,0)x !
i=1

and not just the first approximation used by Sauer (ax)

Upon differentiation and substitution of equation 3.2 into 3.1, two
algebraic relationships result. These relations, which are the necessary
and sufficient conditions for the assumed potential function to satisfy the
equation of motion, are the recurrence formulae defining the A(i, 2j)
coefficients in terms of the set of A(i, o) coefficients. The recurrence
formulae result from the existence condition that the coefficient of each
x and y term in the series must vanish separately in order to satisfy
the equation of motion 3.1, for an arbitrary x and y value.

These recurrence formulae are given below. Their formidable
appearance is the direct result of the extreme nonlinearity of the equa-
tion of motion.  With the definition of :

ey

i,j = [o if; ] , (3.3)
k=i-1

A(i, 2) = (l‘;—l) kZ‘b 12(k+2)(k+1)(i+l-k)A(k+2,0)A(i+l-k, 0) +

+ 8 I (i+l-k)A(k,2)A(i+1-k,0) +
a=i~-k-1

+ Z o, o [(k+2) (k+1) (a+1) (i+1-a-k) A (k+2,0) A(a+1,0) A(i+1-a-k, 0) +
a=0 ’

+ 4 T (a+l)(i+l-a-k)A(k, 2) A(a+1,0) A(i+l-a-k,0)]}
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and

=i-1
Ali, 2(j+2)) -8&3) [ o{ Z 8(i+1-k)(j+2)* T A(k z(,+z)A(1+1 -k, 0)+

+ 2(k+2) (k+1) (i+1-k) A (k+2, 2(j+1))A(i+]1-k, O)}+

a=i-k-1

+ ) [(a#]) (i+1-a-k) (k+2) (Kt 1) A (ke2, 2(j+1))Aa+1, 0)A(i+1-a-k,0) +
a=0

+ (a+l)(i+1-a-K)4(j+2)° T A(k, 2(j+2))A(a+1, O)A(i+1-a-k, 0)]] +

k=i nsj
D) [ 2(i+1-K) (k+2)(k+ 1) A(k+2, 2n)Ali+1-k, 2(j+1-n) +
k=0 n=0

+ (i+1-K)8(n+1)> T' A(k, 2(n+1))A(i+l-k, 2(j+1-n)) +

6
+ (,: I )(n + 1)(k#1)(j#1-n)A(k+l, 2(n#))A(i-k, 2(j+1-n)) ®

a=i-k
) [(a+1)(i+1-a-.k)4(n+1)=r'A(k, 2(n+1))A(a+l, 2(j+1-n))Ali+1-a-k, 0) +
a=0

+ (a+1)fi+1-a-k)(k+2)(k+1)A(k+2, 2n)A(a+1, 2(j+1-n))A(i+1-a-k, 0) + (3

b=j-n
+ {(a+1)(i+l-a-k)4(n+l)2 I A(k, 2(n+1))A(a+l, 2b)A(i+1-a-k, 2(j+1-b-n)) +

+ (a+lli+l-a-k) (k+2)(k+1)A(k+2, 2n)A(a+], 2hA(i+1-a-k, 2(j+1-b-n)) +

+ (j+1-n-b)(k+2)(k+1)(b+1)4 I" A(k+2, 2n)A(a, 2(b+1))A(i-a-k, 2(j+1-b-n) +

+ (j+1-n-b)(n+l)(k+1)(a+1)(-;Tf,l) A(k+1, 2(n+1))A(a+1, 2b)A(i-k-a, 2(j+1-n-b)) +

+ (j+1-n-b)(n+1)(b+1) (16)_(n+l - 711-1 )x

x A (k, 2(n+1))A(a, 2(b+1))A(i-a-k, z(j+1-b-n))]]”
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The original written outline of a method to handle the programming
of the two recurrence relations (equations 3.4 and 3.5) had the Ai,2j's
resolved into polynomials in the unknowns Aj ¢'s. All advice obtained
suggested that the Ai, 2j's be evaluated as pure numbers instead of
functional representations of ¥ and the unknowns, this suggestion was
followed, but one third of the computer running time will be saved if
the program is revised to its original form. .

For convenience in future discussions, let the unknowns be repre-
sented by D,'s , where

D; = Ai+l,0 (3. 6)
when
iz 1

The equations are now being re-programmed to appear in the form
of polynomials of the type

izk
di,i  d2. dn, iy de,i_ 9r,;
Ai,2j= ), e D D, -- D, r , (3.7)
i=1 .
where
ej is a pure number, dy i is the power to which the D, unknown is
raised in the i'? term
and

6 = 7+l

As equation 3.4 is already programmed in the above form, some of the
Aj,2's are presented in Table I,

Here, as in Sauer's analysis, the origin of coordinates is chosen
on the axis a distance € downstream of the minimum section.

At this point in the analysis the unknown functions have been reduced
to a system of unknown coefficients of the type D; and also the unknowne.
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The general inviscid flow boundary condition is that the velocity
at the boundary surface must be tangent to that boundary. The boundary
surface yg is represented as a power series in x

1= 00 .'
Ys = ), By (3. 8)
' i=0

While, the inviscid boundary condition can be written as

(1+u) %& -v=0

where both u and v are evaluated along the boundary surface, i.e:

u

uly g x) = u(Z By x' ,x) = ug(x only)
and (3.10)
v = v(yg, x) = v(Z Bixi,x) = vs(x only)
Substituting equations 3.10 and 3. 8 into 3.9 and collecting the
resulting terms as a power series in x, results in the boundary condi-

tion equation in the form of
i=c0

Gliwo) x 1=0 - (3.11)
i=1
where
j=w g=i a=i ~gq
G(i,) = iB; + ), Y (a+1)q B(a+1) C(i-g-a, 2j)
J:O q=0 a=0
-2 o (ICli-1-q, zj-l)} N (3. 12)

with C (i, n) given by

C(i, 0) = [+1 for i = o} (3.13)

Ofor i+ 0
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C(i, 1) = Bj

and
b=i
C(i,n) = ), B

c 3.14
L e

with n > 2

In equation 3. 11, the G(i,c) designation simply denotes the total
collection of terms constituting the coefficient of xi-1, G(i,®) con-
tains an infinite number of columns of terms nonlinear in Ap 0 and
hence the oo notation.

The only possible solution of equation (3.11) that would be valid
for any arbitrary value of x, would be that

G(i,e) = O (3.15)

for all values of i (i=1,2, 3---00).
Equation (3, 15) thus denotes an infinite set of nonlinear simultaneous

equations in the unknowns Dj (i=1, 2, 3---0), each one containing an
infinite number of terms.

In computing numerical solutions the infinite set of equations
need not be considered, but only those equations that will insure con-
vergence to the required accuracy in the domain of interest. Further-
more, only the number of terms in each equation need be considered that
are necessary to produce the required accuracy.

To better picture this, the A; 2j coefficients are arranged in the
form ofan array '

‘Q
i 0 2 4 6 = - e e e e - - 25 - = - - - -
o 1A . A A A A

20,0  fo,2  Po,a P06 A 25
Lola A A A A

A0 A2 ALa Aue A2

-------- 3.16

2 AZ!O AZ;Z A2:4 A2,6 AZ’ Zj ------ ( )
! 41,0 Ai2 Aj 4 Ay g~~~ Ay 2j= - - -
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Remembering that the first column constitutes the unknowns with
all the other coefficients expressible in terms of the first column,
(through application of equations 3. 4 and 3.5) a maximum number of
rows, M+1l, can be considered, together with a maximum number of
columns, p+l. All rows and columns beyond M+1 and p+l can be
considered negligible.

The expression G(i,e) = O (equation 3, 15) contains all terms
occurring in the first i+1 rows of 3. 16 and an infinite number of its
columns. For the M+1, p+l system the expression G(i,w) is changed
in notation to read G{m, p), thus,

G(m,p) =0
where

m=1, 2, 3---M (3.17)

The expression for G(m, p) is the same as equation.3. 12 with i re-
placed by m and « replaced by p. This system (equation 3.17) has
M equations and contains the terms of the first M+]l rows and p+l
columns of the Aj 2j array, 3.16.

In using the recurrence equations, 3.4 and 3.5, to evaluate the
Aj, 2j coefficients (iiM,jﬁp) considered in the boundary condition
equations (Gm, p's), certain Ak, o terms for which k >M+1 appear. This
is due to diagonal propagation characteristics of the unknowns through-
out the array of 3. 16. These unknowns must be considered zero in the
array of coefficients i< M, j<p. This consideration is justifiable on
the grounds of the expe_cted small magnitudes of these unknowns.

A’judicious initial choice for M and p values must necessarily
result from experience. This choice shall be discussed in Section V1 b..

The system is now reduced to one containing M equations and M
number of unknown Ai,ois' The quantity e, which locates the origin
of coordinates, is an additional unknown, giving a total of M+l unknowns.
The M+1st constraint, necessary to evaluate ¢, stems from mass flow
considerations and will be discussed later.

At this point in the analysis the major task remaining is the
evaluation of the unknowns ¢ & D; ----- Dy,. Calculation of these
quantities allows the calculation of the velocities,u and v, and hence
the calculation of all other flow properties. The D; terms are to be
calculated for various prescribed ¢ values. An iterative scheme
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necessary to compute the Dj terms is discussed below,

The procedure used in the present computer program is as follows:
The ith equation will be used to solve for the ith ynknown by arranging
G(i, p) in the form (note: there is no difference between Gi,p or G(i, p))

Gi’ p= a.i,o (D, DZ - Di_l, Di+1--, DM)'{'ai,]_(D‘l’ DZ, --Di-l, Di+1--’ DM)Di+
+aj, 2{D) Dp -=Dj_j Disl---, Dpf)Di%+ =mmmmmmeme
taj, n{Dy, Dp -=Dj_1, Dijs1--, Dy) Dj"+etc. (3.18)

where Dj; represents the unknown of G(i,p) = 0. Equation 3,18 is
simply an expression for G(i, p) written as a polynominal in D(i) where
the coefficients are functions of Dy Dy--- Dyg exclusive of Dj.

The present program used three values of Dj (holding all others
constant) to fit a cubic formula to Dj vs Gi,p- Using the cubic formula,
a Gj,p = 0 point is predicted for a certain D;j value, After that D; value
is tried, a more accurate cubic is fitted; this continued until an actual
Gi,p = 0 point is found or 50 tries are made,

The process is repeated for all values of i in equation 3,18
(i=1, 2 --- M). A suitable root for each Gj , is used as new input in
the Gi+1,p equation to generate a second set of coefficients and so on -
until the final equation (GM,p)- After the process is performed for the
Mmth equation, all of the G(i,p)'s are evaluated with the on hand values of
the D's, If the absolute values of each and every one of the boundary
condition equations is less than or equal to a specified tolerance (@),
then the on-hand D values are considered a good solution,

Let a cycle be defined as a set of equation solutions - from i=1 to
i=M of G(i,p) - and let k be the number of cycles performed. After the
initial cycle (k=0), Gm,p is apriori non-zeroed. To explain, let Gp,
be equal to minus a number (n) times the value of the Gm, p from the
k-1 iteration cycle, i, e.,

Gm, p|k = -0 G, pl k-1 (3.19)

The problem is to determine n.
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On the last equation (Mth), it was necessary to leave n equal to
zero, as no perturbation occurred to this equation after a Dpg is found.
In all the other equations, on the k=1 and k=2 cycle it was determined
best to let n=. 75, After the k=2nd cycle, n could become a function
of the equation as well as the cycle, i.e.’

Gm, p ) = -n 1 G Pi (3. 20)
k-1

where
Nm, kMm, k-1 + B q (3.21)

On the mth equation and the kth cycle a q is calculated from

G
P -d

= —_————— 3.22

e (3.22)

m,p
k-2
With the restrictions on equation 3.21 as follows

If 3§_lql< 50, then npy, y =nyy g 3+ 0. 3B (3. 23)
depending on the sign of gq
or if Iq!l 50, then np 1 =Np k-1 (3. 24)

While B is an input parameter to the program, it was found best to
let it equal 0.1 or zero.

The a priori non-zeroing procedure is repeated until every

|
Gm’qi a (3. 25)
m=1,2 --- M

It is obvious from the method just described that the closer the
initial estimated D values are to the actual solution D values, the
quicker the computer will obtain the solution. Consequently, it
becomes advantageous to prepare a library of solutions that can
be consulted before a new problem is started. The library obtained
appears in the Appendix.
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The remaining variable is ¢ ., Neither a one dimensional analysis
nor Sauer's analysis allows a variation in mass flow in the nozzle, As
it is physically possible to have a slightly changing nondimensionalized
mass flow through a rocket nozzle, it should be possible, in theoretical
calculations, to have varying mass flow conditions without violating the
theoretical restrictions on the problem, Consequently, it should be
possible to allow a variation of ¢ , so as to allow a variation in the
nozzle mass flow,

The variation in e will be physically restricted to a range of values
between choking conditions and no supersonic flow. Violation of the
physical restrictions in ¢ might show up in the numerical analysis.

There are two different ways in which too high, or too low an
value will appear,

Physically, coo high an € value can show up as a supersonic flow
stream with a subsonic pocket(FIG 2). What seems to happen is
that as € increases the mass flow also increases to the point where it
is impossible to have a completely subsonic cross-section. Consequently,
the Mach one line falls back to the axis instead of proceeding to the nozzle
wall, With too low an € value it is expected that the Mach one line will
intersect the nozzle downstream of the minimum section., A downstream
jintersection would probably violate the entropy law.

One of the mathematic assumptions made quite early in the analysis
was that

|Di+l‘ << \Di| (3. 26)

for any i value. Consequently, when the absolute value of D, approaches
the value of Dp, it is necessary to question the mathematical validity of
the resulting solution (this occurs when € is too large or too small,)
Applying a rule of thumb: A mathematically valid solution shall be
considered one where

D,| < .20D (3.27)
The above statement, necessarily, restricts the range of ¢ . In

the problems observed so far, the lower 1limit of ¢ has always been
stipulated by the mathematical limitations,while the upper limit has been
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stipulated either by the mathematic limitation or by the physical
limitation.

Since ¢ is defined implicitly in terms of mass flow, it is necessary
to solve the problem for various values of ¢ and then calculate the
mass flow for each of these solutions. The ¢ values are then plotted
versus mass flow. If the mass flow is prescribed, the corresponding
¢ is read from the plot, and a final solution can be obtained on that basis.
A tentative plot of ¢ versus non dimensionzlied mass flow appears in
the Appendix as FIG A-9.

4, ANALYSIS AND USE OF THE DATA
FROM THE PRESENT METHOD

Once a solution is found, the problem has just begun. From the
definition of the potential function, equation 3.2, the perturbation
velocity components u and v are:

i=M j=p
u=ulx,y) = 2 2 (i +1)A(i+1, 2j) =i y2d (4.1)

=0 j=0

and i=M  j=p
vz v(x,y) = 2 2(jH1)A(L, 2(j+1) xi y2j+l (4. 2)

i=0 j=0

All of the Aj 2j's are evaluated as pure numbers for the particular
flow field for which a solution exists. Consequently, at any point in
the flow field the Mach number, velocity components, and non-dimension-
alized pressure and density can be evaluated.
If M* is defined in terms of a parameter d; as
= 1+d; (4.3)

then the equation

2u +u? +v? - dy(2+d,) =0 (4. 4)




describes a constant M* curve (where M* is given by equation 4. 3).
Along the curve the velocity components and the flow angle (g) are
evaluated, the velocity components by equations 4. 1 and 4. 2 and the
flow angle by

8 = tan (4. 5)

v
l+u
The initial equation to be satisfied was equation 3.1. An idea can

be obtained as to whether a point in the flow field is within the region

of convergence of the solution or not by evaluating equation 3.1 to see
how close it comes to zero. Define that number as zero.

At the intersection of the constant M* curve and the nozzle, a
check is made as to how close the solution satisfies the imposed
boundary condition. Define the error of the difference between the
stream slope and the nozzle wall slope as er, where

(s -—o—)

Ys =

or = l+u (4. 6)
¥s!

The constant M* line is used as input in the characteristics
nozzle design program. Which M* line is chosen depends on.the
error printout values (zero and er).

Another type of output available is a straight line and is defined as
starting on the axis at a given position and extending to x=0 and the
nozzle wall.

At each increment in position along such a line the flow angle, Mach
number and M* value are obtained.

Along the nozzle surface the M*, yg', tan 6, Zero, and er values
are calculated.

With all the available printouts, it is not too difficult a problem
to analyze the resulting flow field and stipulate the region of applica-
bility of the solution.
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5. INPUT PARAMETERS

The present method assumes that the minimum section of the
nozzle's surface can be expressed as a power series in x, i.e.:

= Q0
Vs = Z B; x' o (5.1)

i=

(o]

(a repeat of equation 3. 8),

Before a problem can be started for a given nozzle contour, a power
series must be fitted to the nozzle surface. If the minimum section can
be represented as an arc of a circle, one can use the equation

(xte ) + [y - (1+p)] 2 = p? (5.2)
where p and e are defined as shown on FIG 1.,
The above equation can be written as
y = f(x) = 14+p [1 - \/1 - (x+e ’ ] (5. 3)

P
A MacLaurin series can then be applied in the form

T mt
y = £(0) + ! (0)x+iz$°—)] x? +[f—3-,(-Ql] x*  etc, (5.4)
where f(0), f'(0), and so on, can be evaluated from equation 5, 3,

After differentiating equation 5.3 the necessary number of times,
the B; values are found as '

By=1+P (1-g) (5. 5)
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1 €
B, = — [<£ 5.6
Pog e 59
1 1 1
B, = = -~ — (5. 7
T2 \s (pg) | )

vz (3

1 1\ A% (5.9)
By " 8g (Bgz) [1 +4 (3) ]

4 2
BS:_}8_5é (p_lgz- (%) [1+13*. (7})] (5.10)
Be = —— [— 1+ 12 Ay + 8 i4 (5.11)
¢~ 1é6g pg? p P )
6 2 4
5 1 7 e e * 64 € ¢

Bg= 1285 (Ez) [1 +24 (;) + 48 (—p t 5 (;) ] (5.13)
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One of the purposes of this analysis is to be able to handle a non-
constant radius of curvature solution. A subprogram to evaluate any
nozzle minimum section in terms of a power series is in process.

DISCUSSION
1. MATHEMATICAL PROBLEM AREAS OF THE PROGRAM

Some mathematical areas to be clarified from the preliminary
report (Ref 5) are:

a. Non-Unique Solutions

The form of the boundary condition equations (equations 3.12
and 3.17) is such that more than one solution for D; is possible in the
iteration scheme. While a certain number of them will be complex
conjugates, more than one might be real. There are two possible
physical explanations for more than one real solution. If a particular
solution of a particular boundary equation would not iterate success-
fully, one might be investigating an unstable solution that could not
exist physically for more than an instant of time. Needless to say, in
the transonic flow region, unstable solutions have become infamous.
Even if more than one complete problem solution set is found, it is
suspected that all except one would represent a diverging series. A
diverging series could quite possibly represent another unstable
solution or possibly be the result of extraneous roots. A diverging
solution, mathematically, cannot be considered a valid solution.

In most cases, the starting data represents a solution similar
to the one desired. Consequently, it is felt that the iteration scheme
solves for the closest one which is the right one., Also, if the program
tries to come up with an extraneous solution, the iteration scheme
might oscillate until the program found itself back at the valid case.

While the constant M* lines are being constructed, the multi-
value problem arises again. For any given y, there is more than one
x value that lies on the constant M* curve because of the nature of
u and v, and conversely.

Experience with the program has shown that the transonic range

is repeating itself, just as a sine or cosine wave does every 360°. The
region of interest, however, is the vicinity of the throat of the nozzle.
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Consequently, the program is looking for the particular curve
that starts at the x axis, close to the origin, and propagates upward,
toward y greater than one. '

The program for calculating the M%* lines is written so it
will reject any point it finds that is further away from the previous

point than four times the step size but will find the right point instead.

b. Region of Applicability

Let the region of applicability be defined as that portion of the
flow field where the boundary condition and initial equation are satisfied
to a desired degree of accuracy. The number of unknowns that need
be considered is directly a function of the region of interest. If one
was interested only in the region about the y axis (x quite small),then a
small number of unknowns need be considered. On the other hand, the
larger the highest value of x becomes, the more unknowns that are
required to satisfy a given tolerance. ’

It is usual in transonic analyses to always include, inside
the region of applicability, the Mach one line. But, in this analysis, to
include the Mach one line necessitates use of quite a few more unknowns
than would otherwise be needed. Consequently,with the proper restric-
tions, the analysis can be limited to four unknowns.

The constant M* line that would become the output of the pro-
gram must be chosen prudently by analyzing the various error functions.
Fortunately, it turns out that as the radius of curvature becomes
smaller the preferred M* value becomes higher, producing better
accuracy in the next analysis (characteristics).

In the case of a radius of curvature of 4. 0, a plot of various
M#* lines for a M, p system of 4,7 and 7, 9 (FIG 3) shows that
the M#*=1. 0 lines vary considerably. But, the higher valued M* lines
for the 4 and 7 unknown systems are similar (M#*=1.10 through 1. 15),
with the lines closest to x=0, y=y (M#*=1.13) practically identical.
Consequently, if the M*=1, 13 line was used as the output data, only a
4 unknown system would be required. Along the M% = 1.13 line for
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the 4 unknown case, the maximum zero value is . 001 with er = +. 00005.
Therefore, M#%=1.13 is a good choice of data to be used in the charac-
teristic program.

The choice of the number of columns to use is more difficult
than the choice of the number of unknowns. The main restriction to
be satisfied is that the last column should have no effect on the region
of interest. The problem complicates itself if too many columns are
included because too many possible solutions are allowed. At a certain
point the addition of another column introduces a solution that is slightly
different than the solution required, leaving the computer with no way
of choosing which solution is better. Experience has shown that 9
columns is more than sufficient but yet not too numerous to cause
extraneous solutions.

The array of A; Zj's for a p=2.00 and e=. 165 (Table II)
shows that the effect of the ninth column for an x value less than
+ . 2 would be small compared to the other columns.

One of the initial assumptions made about the A 2j series is
that
. < a
: i
100 j=1, 2mmmm- 00
and . (6.1)
lim A £ a
j—»w I-ZJ i=1: Zmmmne o0;

in all cases checked the above has been true.

One of the minor problems in handling the program was the
discovery of unbalanced arrays of Ai, 2i- An unbalanced array
can be defined as that array where the overemphasis on one of the
variables produces a solution that has no physical significance. With
the case of M=4 and p=3 the x variable is overemphasized. This occurs
when the number of columns (p+l) is smaller than the number of
rows (M+1). There exists the implicit assumption that the x variable
exerts a greater effect than the y variable., However in the actual
physical system, the converse is true; the boundary condition is applied
where y>1.0 and x<1.0. Consequently, on éhysical grounds alone, one
is justified in not trusting any solution where M>p. '
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2. UTILIZATION OF THE PRESENT PROGRAM

This analysis is just one of three parts of a procedure to design
a given rocket nozzle, Initially, the propellants, chamber pressure,
fuel to oxidizer ratio, minimum section contour radius, nozzle area ratio,
and the rocket nozzle length are specified. A chemical equilibrium program
is used to evaluate the chemical reactions and find the pressure and ratio
of specific heats (7) at various Mach numbers, The present analysis
utilizes the equilibrium 7 value to produce input data for a method of
characteristics equilibrium program that then designs the diverging
part of the nozzle for various exit pressures.

Using equilibrium data as an input parameter for a frozen flow
program (Transonic Analysis) and then using these results in an equilib-
rium program (Characteristics Program) seems contradictory.

Although the total flow field is to be treated as an equilibrium
problem, one part of that field (under certain conditions) can be treated
as frozen flow if

8 <
VoSS R

where & isthe significant length parameter of the frozen flow region,
(FIG 4), V is the lowest velocity through that region, and R; is

the fastest reaction rate of the chemical processes that might occur in

the region., As V and R{ cannot be varied in the programs, the only

choice is to reduce, as much as possible the size of 6. The region defined
by 0 is reduced by using, in the transonic analysis, the ¥ value from the
chemical equilibrium program which corresponds, as closely as possible,
to the Mach number of the most accurate constant Mach number line,

3. COMPARISON WITH OTHER ANALYSIS

It was predicted previously that this analysis and Sauer's would
tend to agree more with one another as the radius of curvature increases,
For the case of a radius of curvature of five, there is already a noticeable
difference as can be seen in FIG 5.

There is a band of Mach numbers where a transonic analysis
and the method of characteristics are both applicable, If the transonic
data agreed with the characteristic data in this band one could draw the
conclusion that the transonic method used was a valid one,
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A comparison was made utilizing a nozzle of radius of curvature
of two. First, two different M* lines were calculated by Sauer's method
as inputs for the characteristic program. The characteristic program
proceeded, in each case, to calculate the Mach number distribution
along the nozzle wall (FIG 6). The two different curves are symbolized
by a@ and a A . From Sauer's equations, the hypothesized Mach
number distribution was calculated - it is represented by @ on
FIG 6. The characteristic curves and the predicted curve do not
agree too well with each other.

The procedure was repeated with the present transonic analysis
calculating the input M¥* line for the characteristic program. The
resulting Mach number distribution is symbolized by ® on FIG 6. It
can be seen on the figure that the Mach number distribution along the
wall calculated using the present method (@) lies quite close to the
one calculated by the method of characteristics (®). Consequently, the
present transonic analysis seems to be accurate.

RECOMMENDATIONS

Before the conclusion of this study, the following has yet
to be completed:

1. SIMPLIFIED ANALYSES

The two simplified analyses (Methods I and II) must be tried
for various cases. Most important is deciding how many terms are
to be used in their potential functions infinite series. After numerical
cases are tried, both methods will be used in place of Sauer's method
in the Allison program (6). Of course, a comparison between Sauer's
analysis, Method I, Method 1I, and the present method will be made.

2. LITERATURE SEARCH
The literature search, now in progress, will be continued

until all available report, books, and periodicals have been reviewed
for useful methods and experimental data.
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3. PRESENT METHOD

The Aj, 2j sub~routine mustbe re-programmed as mentioned in
Section III. Afterwards, it is expected that other changes will become
apparent that can further shorten thé running time of the program.

After these changes are made, the p value will be pushed as
low as the program will go. The resulting listing of all the unknowns,
for particular p and ¢ values, will become part of the program for
use with a routine for choosing initial values of the unknowns to start
the program. Most of the solutions obtained are based ona v of 1. 20;
to efficiently handle other ¥ values further work will have to be done.
Increments of the unknowns, (not necessarily small) versus increments
in v values, must be obtained for various p and € values.

The nozzle parameter sub-routine will soon be revised so it
can handle non-constant radius of curvature cases. After no more
program changes are necessary the programmer will streamline
and polish it up, so that anyone can utilize it with a minimum of
instructions. Such instructions will appear in the final report.

4. FINAL REPORT

The final report will contain all of the material presented herein,
including revisions and changes. Examples and trends discovered
in the course of the evaluation of the analysis will be included.
Derivations of the equations used, as well as the operational methods,
will appear as appendixes.

The report will contain a write-up of all the programs, with

a section written by the programmer presenting symbolic write-ups,
instructions for use, and flow charts of all the sub-programs in use.
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APPENDIX

LIBRARY OF SOLUTIONS

The solutions achieved to date appear in two forms, the unknowns
versus the radius of curvature of the minimum section, p, and the
unknowns versus the distance, ¢, of the Mach one 'line from the minimum
section.

The last curve (FIG A-9) represents the various non dimensionalized
mass flows (for.constant p values) versus € values. The relationship
between the mass flow (m) and the non dimensionalized mass flow (m)
is

] —
m= y2 p a¥ m
o o ’

where Po is the isentropic stagnation density.
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TABLE I
Ai, 2 CONSIDERING ONLY 4 UNKNOWNS

Power of:

Y+l

D4

Dy

0

12.

Ag 2

5
.0
11.25
15.
20.

NS

30.
22.

30.

12.0

Ag 2

36.0
22.

30.

48.

47



TABLE I (CONTINUED)
Ai, 2 CONSIDERING ONLY 4 UNKNOWNS

Power of:

D,

Coeff.

(Cont. )

Ag 2

6.75

81.

12.
72.

48.

18,
108.0

13.5
81.

72,

12.
32.

16.0

Ag 2

28.0
70.

31.
252.0

35.
105.0

70.

28.
168.0

94. 5

63.0
378.0

56.0

63.
252.0

112.0

126.0
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TABLE I (CONTINUED)
A; o CONSIDERING ONLY 4 UNKNOWNS

Power of:
Dl DZ Dj D4 Y+ 1 r
5 1 0 0 4 3
1 3 0 0 3 2
3 2 0 0 4 3
5 1 0 0 5 4
7 0 0 0 3 2
7 0 0 0 4 3
7 0 0 0 5 4
7 0 0 0 6 5
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Coeff.
{Conc.

A7, 2
96.0
192,
432,
768.
256.
48,
576.
960.
40.
432,
720.
384,
32.
160.
192.
64.0

coCoocoVooPoo0coo
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TABLE I (CONCLUDED)
Aj, 2 CONSIDERING ONLY 4 UNKNOWNS

Power of:

o

o
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D3 D4 v+ 1 r
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INTERIM REPORT ON METHODS OF DETERMINING
THE TRANSONIC FLOW FIELD IN AN
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By
R. S. Mendelson
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ABSTRACT

Starting data are provided for internal characteristic programs
pertaining to axially symmetric rocket nozzles. Several approximate
methods are examined before a complete analysis is attempted.

Using perfect frozen gas considerations, the potential function in
the region of interest is approximated by a double power series in the
space variables. The potential equation of motion, with the inviscid
boundary condition, produces non-linear simultaneous equations.

The non-linear equations are handled uniquely, and the results
are utilized to describe the flow field. Different methods of checking
the validity of the results are applied, and comparisons are made
with other analyses.

The remaining difficulties in the development of a production
program that can handle arbitrary minimum section geometry and
slightly varying mass flows are discussed.



DISTRIBUTION

DIR

DEP-T
AST-S
I-E-DIR
R-AERO-DIR
R-AERO-T
R-ASTR-DIR
R-ASTR-TA
R-ASTR-R
R-ASTR-N
R-COMP-DIR
R-COMP-R
R-FP

R-FP

R-FP

R-F¥P
R-ME-DIR
R-P&VE-DIR
R-P&VE-DIR
R-P&VE-T
R-P&VE-V
R-P&VE-A
R-P&VE-A
R-P&VE-AN
R-P&VE-AVA
R-P&VE-VA
R-P&VE-VS
R-P&VE-VO
R-P&VE-VN
R-P&VE-S
R-P&VE-SA
R-P&VE-P
R-P&VE-P
R-P&VE-P
R-P&VE-P
R-P&VE-PR

Dr. von Braun
Dr. Rees

Dr. Lange
Mr. Belew
Dr. Geissler
Mr. Murphree
Dr. Haeussermann
Mr. Daussman
Mr. Taylor
Mr. Moore
Dr. Hoelzer
Mr. Fortenberry
Dr. Koelle
Mr., Williams
Mr. Sanders
Mr. Spears
Mr. Kuers
Mr. Cline

Mr. Hellebrand
Mr. Finzel
Mr. Palaoro
Mr. Goerner
Mr, Barker
Mr. Jordan
Mr. Neighbors
Mr, Glover
Mr. Schulze
Mr., Kistler
Mr. Thrower
Mr. Kroll

Mr. Blumrich
Mr. Paul

Mr. McCool
Mr. Isbell
Mr. Kuberg
Mr. Eby

63




DISTRIBUTION (CONTINUED)

R-P&VE-PA Mr. Thomson
R-P&VE-PA Mr. Reed
R-P&VE-PA Mr., Chandler
R-P&VE-PA Mr. Lombardo
R-P&VE-PA Mr. Thompson (5)
R-P&VE-PE Dr. Head
R-P&VE-PE Mr. Bergeler
R-P&VE-PM Mr. Fuhrmann
R-P&VE-PM Mr. Voss
R-P&VE-PP Mr. Heusinger
R-P&VE-PP Mr. Eilerman
R-P&VE-PT Mr. Wood
R-P&VE-PT Mr. Connell
R-P&VE-M Dr. Lucas
R-P&VE-RT Mr. Hofues
R-QUAL-DIR Mr. Grau
R-QUAL-A Mr, Urbanski
R-RP-DIR Dr. Stuhlinger
RP-R Mr, Miles

R-5A Mr. Dannenberg
R-TEST-DIR Mr. Heimburg
MS-H Mr, Akens
MS-IP Mr. Remer
MS-IPL Miss Robertson (8)
HME-P

CC-P

CCSD/ H Mr. W, Peyton (3)
CCSD/ H Mr. J. Zika
CCSD/ H Mr. B. Emerick
CCSD/ H Mr., W. Cannizzo
CCSD/ H Mr. H. Bader
CCSD/ H Mr. R. Stark
CCSD/ H Mr. D. Ruppel
CCSD/H Mr. M. Bell (2)
CCSD/ M Mr. L. Francis
CCSD/ H Librar

CCSD/ M Mr. G. Boyd
CCsSD/ M Library

CCSD/ H Mr. R. Mendelson (3)
CCSD/ H Mr. T. Perkins

64




DISTRIBUTION (CONCLUDED)

CCSD/ H Mr, M. Carson

GE/ MSFC Mr., A. Zakson

GE/ MSFC Miss M. Morgan
CCSD/ M Mr. R. Loomis

CCSD/ M Mr. D. Buell

Scientific & Technical Information Facility (25)
Attn: NASA Representatives

(S-AK/ RKT)

P.O. Box 5700

Bethesda, Maryland

NASA Headquarters:

Tode RP Mr. Sloop
Mr. Burlage

Code MLV Dr. Hall
Mr. Lovejoy

Code MLP Mr, Tischler

Mr. King
Code ME Mr. Hall
Code SV Mr. Nelson

Lewis Research Center:
Mr, Connors
Mr. Conrad
Mr. Dankhoff (3)

Langley Research Center:

Mr. Pierpoint
Mr, Corsin

65



